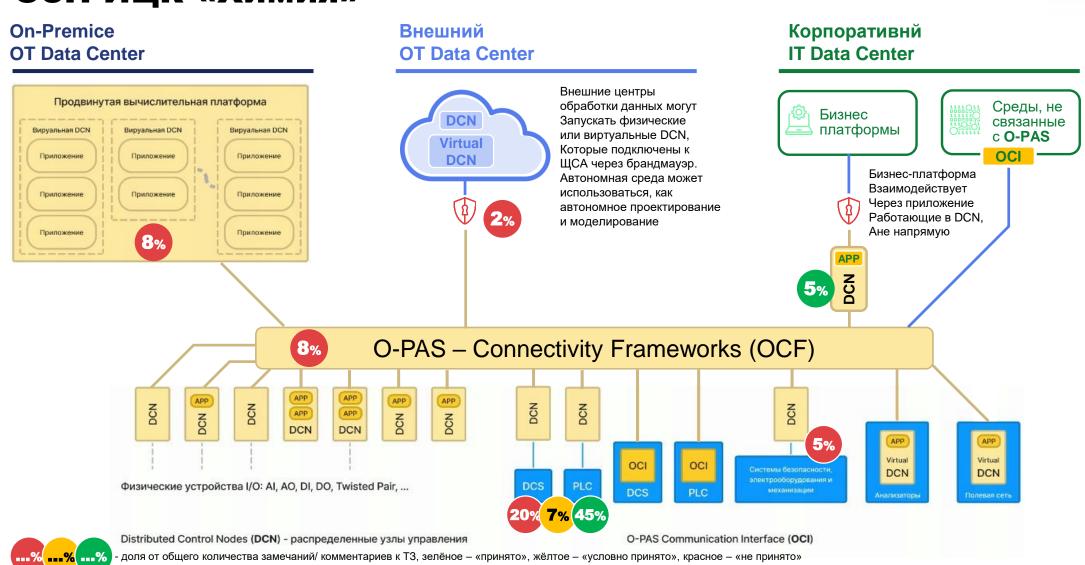
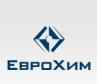
Рабочая группа «Открытая АСУТП» Круглый стол

Технические и бизнес препятствия для перехода к практической разработке решений АСУТП на базе принципов открытой архитектуры




Статус рассмотрения ТЗ ПАО «ФосАгро» по проекту внедрения АСУТП в рамках ОЗП ИЦК «Химия»

Основные принципы и предложения, которые не были учтены

Информационный обмен между техническими компонентами, функциональными блоками АСУТП и внешними системами должен осуществляться на базе открытых цифровых общепромышленных непроприетарных унифицированных интерфейсов и протоколов передачи данных

Общесистемное, специализированное и прикладное ПО АСУТП должно быть работоспособным на любом аппаратном обеспечении любого производителя с учетом технических требований, предъявляемых к аппаратному обеспечению со стороны производителя соответствующего ПО (ПО АСУТП вендорнонезависимо от производителя аппаратного обеспечения)

Технические устройства/модули ввода-вывода размещаются на территории предприятия с учетом следующих принципов:

- 1. Обеспечить минимальные протяженность и количества линий связи (медь и/или оптоволокно).
- 2. Обмен производственными данными/сигналами между устройствами уровня ПЛК/SCADA и модулями ввода-вывода осуществлять только по цифровым протоколам и интерфейсам. Техническая и логическая архитектура и топология сети должны обеспечить максимально надежную и устойчивую передачу производственных данных/сигналов на расстояние не менее 1000 метров (преимущественным типом физических каналов передачи данных считать оптические линии связи).
- 3. Обеспечить буферизацию (промежуточное хранение) производственных данных на уровне устройств/модулей ввода-вывода для митигации рисков потери связи

Функции сбора, первичного обработки, хранения данных и управления технологическим процессом должны быть вендорнонезависимо по отношению к производителям общесистемного ПО и аппаратного обеспечения АСУТП

Добавить функционал систем класса APC, RTO, MPA, Предиктивной диагностики (и прочих ОТ решений) как стандартных приложений для АСУТП (например, с применением микросервисной архитектуры).

Принципы открытой архитектуры АСУТП

1	Совместимость	ISO/IEC/IEEE 24765:2010(E) Способность двух или более систем или компонентов обмениваться информацией и использовать информацию, полученную в результате обмена.			
2	Модульность	ISO/IEC/IEEE 24765:2010(E) Свойство системы, состоящей из отдельных компонентов, минимизировать воздействие изменений в одном компоненте на другие компоненты. Степень, до которой компоненты системы могут разделяться и комбинироваться заново.			
3	Соответствие стандарту	Соответствие процессов разработки и сертификации систем или компонентов системы требованиям открытых технических стандартов.			
4	Масштабируемость	Степень, до которой возможности системы могут подвергаться изменениям с тем, чтобы отвечать требованиям к системе.			
5	Защищённость	Способность системы или компонента к защите от несанкционированного доступа или модификациям в течение жизненного цикла.			
6	Надёжность	ISO/IEC/IEEE 24765:2010(E) Способность системы или компонента выполнять требуемые функции в установленных условиях в течение необходимого периода времени.			
7	Ценовая доступность	Проектная характеристика, выраженная как решение, которое соответствует потребностям или требованиям заказчика при приемлемой цене (включающей повторяющиеся и разовые расходы).			
8	Переносимость	ISO/IEC/IEEE 24765:2010(E) Простота переноса системы или компонента из одной аппаратной или программной среды в другую.			
9	Эксплуатационная готовность	ISO/IEC/IEEE 24765:2010(E) Степень готовности системы или компонента к эксплуатации. Способность компонента или сервиса выполнять требуемые функции в установленный момент или на протяжении установленного периода времени.			
10	Понятность	Способность конфигурационного элемента или информации, находящейся в нем, быть найденными. Способность найти элемент и найти информационный обмен в нем и его возможности.			
11	Оптимальность архитектуры	Централизация и минимизация физической и программной инфраструктуры АСУТП уровней L1, L2 (согласно модели классификации ANSI/ISA 95) за счет применения современных технологий виртуализации, облачного хранения данных и облачных вычислений.			

Стандарты «Открытой АСУТП» - способ исключения зависимости от производителя конечного решения

Информационная безопасность

Требования к построению «Открытой АСУТП» на объектах КИИ с учётом ФЗ N187

Функциональная безопасность

Требования к построению «Открытой АСУТП» на объектах ОПО с учётом УПБ (SIL)

Архитектурные стандарты

- Отрытый стандарт промышленной автоматизации, охватывающий все отрасли промышленности и различные виды производств (непрерывные, дискретные, гибридные)
- Стандарт единой информационной модели открытой АСУТП (уровни 0,1, 2, 3 ANSI/ISA-95)

Программное обеспечение

- Требования к программной части «Открытой IIoT-платформы для управления объектами промышленной автоматизации»
- Требования к программной части «Открытой распределенной системы управления (РСУ)»
- Требования и разработка «Открытой интегрированной среды разработки»
- Требования и разработка «Открытого программного ПЛК»
- Требования и разработка открытых протоколов внутренней и внешней шины ПЛК
- Требования к контролю версий и изменений в проектах (локальный репозиторий, удаленный репозиторий)
- Требования и разработка программных средств визуализации
- Требования к ОСРВ для работы в АСУТП
- Требования к сбору и хранению данных процесса, диагностика и предиктивная аналитика

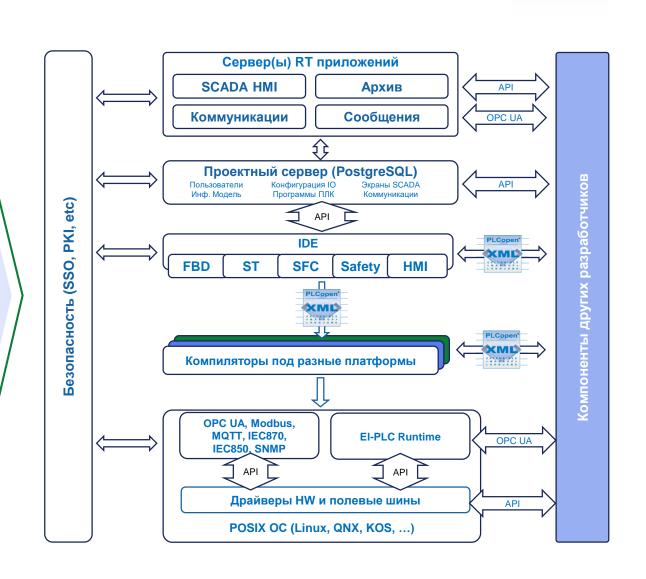
Аппаратное обеспечение

- Требования к аппаратной части открытой IIoT-платформе для управления объектами промышленной автоматизации
- Требования к аппаратной части открытой распределенной системе управления (РСУ)
- Требования и разработка микроэлектронных устройств для CPU (MIPS, RISC-V, ARM)
- Требования и разработка микроэлектронных устройствконверторов для протоколов автоматизации (EtherCAT, ProfiBUS, ProfiNET)
- Требования и разработка микроэлектронных устройств для модулей (DIO, AIO, высокоскоростного счета частоты HFC)
- Требования и разработка для модулей рефлективной памяти
- Требования и разработка для модулей сбора и анализа данных процесса

Области для сравнения решений АСУТП на рынке РФ

Производитель	Среда разработки	Среда исполнения	Протоколы	Оценка соответствия принципам открытой архитектуры
инженерная компания ПРОСОФТ СИСТЕМЫ	Astra.IDE Epsilon LD	RegulRTS	RegulBus	требуется разработка методики сравнения
EXAPA	Elicont-IDE	EI-PLC Runtime	INEL	требуется разработка методики сравнения
TORNAD © MODULAR SYSTEMS	ISaGRAF	ISaKER	Modbus UDP	требуется разработка методики сравнения

Легенда оценки


Платформа Эликонт-PLC от АО «ЭЛАРА»

Фундаментальные принципы:

- модульность
- работа на «любых» программно-аппаратных ресурсах
- использование стандартных интерфейсов, протоколов, шин и т.п., даже во внутренних коммуникациях
- реализация как PCУ, так SCADA+PLC систем
- добавление, изменение и удаление компонентов системы управления без перезапуска других компонентов
- встроенные сервисы безопасности
- открытость API для встраивания компонентов сторонних разработчиков
- ОЕМ лицензирование компонентов платформы сторонним организациям

Вопрос для дискуссии по теме

Какие существуют технические и/ или бизнес ограничения, препятствующие переходу разработчиков АСУТП РФ на открытую архитектуру АСУТП:

Что мешает? Что сдерживает? Что нужно от Заказчиков и/ или от регулятора для стимулирования подобного перехода?